Intraoral impression-taking:
Digital datasets soon to catch on everywhere

The annual meeting of the German Society of Dentistry and Oral Medicine (DGZMK), held in conjunction with the Society for Dental Ceramics (AG Keramik), the DGZMK’s professional society, is a major event that critically examines experiences with all-ceramics and CAD/CAM methods in clinics and laboratories. At this year’s meeting, the 10th Annual Ceramic Symposium, Prof Bernd Wöstmann, Head of Prosthodontics at the University of Gießen in Germany, focussed on the premise that has been made in the digitisation of intraoral impression-taking.

 Naturally, perfectly fitting restorations that can be seated without further correction are every dentist’s wish. This requires exact impressions of the preparation and dental arch. Quite some time ago, digitisation made inroads into this discipline, beginning in 1985 with the first digital impressions by Prof Werner Mörmann at the University of Graz. Prof Wöstmann explained that en route to an exact restoration, creating an image of the intraoral situation near to a real or a virtual model is a very crucial step – it is only possible to produce the final restoration indirectly, whether it is an inlay or a multi-unit fixed dental prostheses bridge (FDP).

Owing to material and haptic conditions, it is still impossible to produce a "flawless", conventional (stone) model from classical impressions with elastomeric impression material. Every virtual model produced on the basis of a classical impression is inexact, regardless of the accuracy of the scanning procedure itself. It thus makes sense to perform scanning directly in the oral cavity.

Now that producing all-ceramic restorations with CAD/CAM has become almost unthinkable, the next step has already been taken towards completely eliminating the gap from preparation to seating the prosthesis: optical scanning to create a digital, intraoral impression. In terms of clinical use, the de-vices – CEREC AC (Sirona), C.O.S. Lava (SM ESPE), iTero (Cadent-Straumann) – are similar, but they function according to different principles. Technically, the systems are similarly constructed, but the procedures for acquiring the 3-D datasets differ.

The acquisition unit of CEREC AC uses short-wave blue light and functions according to the principle of structured light projection (Fig. 1). The scanning procedure captures single images; the angled imaging function acquires tooth areas below the equator and thus increases accuracy. Through matching, several images are computed of a quadrant or whole arch (Fig. 2), as are the antagonist dentition and bite record.

The wavefront sampling of C.O.S. Lava captures the tooth shape by moving the video camera over the teeth. The distance to the camera can be calculated from the changing position of individual pixels during filming, giving rise to a 3-D image of the dental arch (Figs. 3 & 4).

The functioning of the iTero scanner is based on the principle of laser triangulation. The image captures the tooth and vertically scans 500 levels, each 50 µm deep (Figs. 5 & 6).

According to Prof Wöstmann, the scanning accuracy of CEREC AC and C.O.S. Lava corresponds to a conventional hydrocolloid or polyvinyl-siloxane impression. The differences were not significant. Measurement of crown copings fabricated with C.O.S. Lava yielded an average of 35 µm (± 16 µm) for all marginal gaps. Copings produced using the conventional impression-taking technique had a mean marginal gap of 69 µm (± 25 µm). Syrek et al. found comparable results in a clinical study. The mean marginal gap of conventionally manufactured crowns was 71 µm, as compared with 49 µm for the C.O.S. Lava crowns. For CEREC 3D, the literature cites a tolerance of 40 µm (± 21 µm).

Another advantage of digital impressions is that the scanned preparation can be checked directly on the screen, where imperfections can also be immediately corrected (Figs. 7 & 8). For patients with an easily triggered gag reflex, these scanning methods greatly improve treatment comfort. Further benefits result from fewer working steps involved, especially in the practice. Choosing an impression tray, mixing the elastic impression compound, waiting during setting and disinfection, as well as producing a model are no longer necessary.

Fewer treatment and working steps also mean fewer sources of error and better standardisation, which in turn can improve the predictability of treatment outcome. Prof Wöstmann cautioned that with crown margins that are clearly subgingival, the optical systems reach their limits; thus, conventional impression-taking techniques are still used in such cases.

Digital impressions are more accurate

At the 12th annual meeting of the International Society of Computerised Dentistry, Prof Gerwin Arnetzl, University of Graz, compared the accuracy of digital-ly generated impressions with that of conventional elastic impressions. When conventional impressions demonstrate an elastic recovery of 98.5% after de-formation, a fitting accuracy of 55 to 75 µm for an inlay cavity can be expected. For cast pieces, additional tolerances of up to 46.5 µm accumulate, so that indirectly manufactured crowns can attain deviations of up to 114 µm.

Different elastomeric impression techniques can cause considerable deviations. For instance, in analogue impression-taking using different impression materials and trays, dimensional changes compared with the reference (a cast metal control) varied between 0.32 and 1.17%. A deviation of 49 µm was found for standard and 122 µm for control impression-taking. As a rule, however, the studies on analogue impression-taking techniques were performed using 2-D measurements; the new studies on the imaging accuracy of optical methods were conducted with 3-D volume difference analyses.

Digitally or optically produced images by different operators exhibited a measurement accuracy of 11 µm.

With the analogue impression-taking technique, the de-visions for a whole quadrant ranged from 22 to 101 µm, while the measurement error tolerance of digital-im-ages is only around 55 µm, thanks also to the enhanced accuracy made possible by angled images. Potential sources of error in the digital impression-taking technique are scanner adjustment, magnetic interference fields during image processing, image noise and the software. According to Prof Arnetzl, these results prove that given the correct use of a camera or scanner, digitally generated data exhibits fewer errors and greater...
Fig. 1. Short-wave blue light with structured light projection. (Photo courtesy of Cinder)

Fig. 2. Single images are matched to create a digital full arch model, basis for construction and milling of the framework. (Photo courtesy of MI"

Fig. 3. Optoelectronic intraoral scan using the C.O.S. Lava system. Crown preparation and preparation margins are portrayed exactly. In addition to framework manufacture, the dataset enables production of an SLA resin model including the antagonist teeth.

Fig. 4. Intraoral scan (C.O.S. Lava) of a molar with a cusp-supported preparation for a ZrO2 crown framework. (Figs. 3 & 4 courtesy of Westman)

Fig. 5. iTero is equipped with a laser camera. It is the third intraoral scanning system on the European market.

Fig. 6. iTero scans the tooth at several levels using laser triangulation. (Photo courtesy of Lauer)

Fig. 7a & b. The virtual “prep-check” checks the preparation margins and the occlusal reduction against the antagonist tooth. (Photo courtesy of La"

Fig. 8. The full-arch scan for an FDP construction using the iTero system. (Figs. 5, 6, 8 & 10 courtesy of Straumann)

Fig. 9. SLA resin model using the C.O.S. Lava system. (Photo courtesy of 3M ESPE)

Fig. 10. Digitally milled resin model using the iTero system.

Fig. 11. Construction of an FDP.

Fig. 12. SLA model (acrylic) for try-in in the framework.

Fig. 13. Tying in the ZrO2 framework.

Fig. 14. Veneering and articulation. (Figs. 11–14 courtesy of Baltzer)

Accuracy is needed to layer on the veneers and perform articulation. CEREC AC also computes a virtual model (Fig. 11).

Framework-free crowns and short-span FDPs can be milled immediately, directly from the dataset, in the practice’s laborator"

Keeping the model or the framework and articulation at the dental technician, regardless of distance. Supplemental facial photos, information on tooth colour, individualisation, mate"

The datasets they create, thanks to the exchange of information online, simplify communication between the dentist and the dental technician, regardless of distance. Supplemental facial photos, information on tooth colour, individualisation, mate"